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Abstract

Abstract
Satellite remote sensing have, and continues to, produce huge amounts of data that are
useful to characterize the earth’s surface, being the land cover maps one of the most
useful products to monitor a variety of applications and services. Traditionally, single-
sensor imagery was used to produce such maps, however, more recently the benefits
of combining multi-sensor data like optical and radar satellite images have demon-
strated to produce more reliable land cover maps. There is an opportunity to use a di-
verse source of information in order to exploit their complementarity and produce more
accurate land cover maps, which includes using Satellite Image Time Series (SITS),
multi-sensor information, and the ability to re-use reference data which is expensive
to acquire. For the latter point, Unsupervised Domain Adaptation (UDA) have been
recently explored in the context of multi-temporal remote sensing analysis to produce
land cover maps without reference data from the year in which that map needs to be
produced (known as target domain), thus, re-using reference data from a previous year
(known as source domain).
In this study, we expanded the Spatially-Aligned Domain-Adversarial Neural Network
(SpADANN) framework (Capliez et al., 2023) that combines adversarial learning and
self-training to transfer a classification model from a time period to a successive one
on a specific study area, to be able to use optical and radar data from Sentinel-2 and
Sentinel-1 SITS specifically, thus, dealing with the multimodal temporal transfer sce-
nario in the context of land cover mapping. The results from the experimental assess-
ment on a study area in Burkina Faso, show an increase in the performance of the
SpADANN framework by up to 1 point of F1 score compared to using only single-
sensor SITS. Additionally, the increase in performance of the multimodal framework
if more evident when analyzed with the macro F1 score, suggesting that the multi-
modality brings added value for the low represented classes. The results contribute
to demonstrate the importance of using multimodal information in the framework of
UDA, where it is still under-explored.
Keywords: Satellite image time series, Unsupervised domain adaptation, Multi-
modal, Deep learning, Remote sensing
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Introduction

1 Introduction
Food security is defined as the accessibility to safe and nutritious food. The Food and
Agriculture Organization (FAO) report of 2022, shows that the prevalence of severe
food insecurity in the world has increased in 4% during the period of 2014 (7.7%) to
2021 (11.7%), being Africa and Latin America and the Caribbean the regions with
the most increase (16.7% to 23.4% and 7.5% to 12.8% respectively) (FAO et al., 2022).
Rainfall and temperature play a decisive role in Africa’s food security, and the context of
climate change, food security is threatened by extreme weather events that are forecast
to occur more frequently, posing a particular challenge for countries that rely on rain-fed
agriculture for their supply (Pickson & Boateng, 2022).
The possibility to obtain timely and up-to-date Land Cover Maps (LCM) and more
specifically crop maps are of paramount importance to develop economically and eco-
logically sustainable agriculture (Wardlow & Egbert, 2008; You et al., 2014). These
maps should include crop type information across multiple years and regions, enabling
the mapping of crop sequences as an indicator of agricultural land use intensity. The du-
ration and diversity of crop sequences directly impact landscape complexity (Tscharntke
et al., 2021).
The Sentinel-1 (S1) and Sentinel-2 (S2) missions are of particular interest, since they
provide publicly available radar and optical/Multispectral (MS) satellite imagery with
a high revisiting time and spatial resolution (∼10m pixel size). Multitemporal images
can be organized as Satellite Image Time Series (SITS), which comprises images of the
same area acquired at different dates, and are of particular interest in crop studies and
land cover mapping. They enable opportunities for studying the seasonality or evolu-
tion of objects through time and aid to their discrimination. The single use of optical or
radar has been successful to produce field scale crop maps at national and continental
scales (Defourny et al., 2019; d’Andrimont et al., 2021). For example, Defourny et al.
(2019) developed Sen2-Agri, an operational system for generating crop type maps and
vegetation status from Landsat 8 and Sentinel-2 time series. In their study, they gen-
erated crop type maps for five major crop types in three countries (Ukraine, Mali, and
South Africa) at a spatial resolution of 10m, and found that accuracies improved with
clear-sky observations during the growing season. These types of large scale systems
rely of traditional machine learning algorithms (e.g. random forest, support vector ma-
chines) due to the effective performance they provide (Pelletier et al., 2016; Son et al.,
2018). More recently, the use of deep learning approaches that are able to explicitly
exploit the temporal features of SITS are gaining more attention (Rußwurm & Körner,
2018; Ndikumana et al., 2018; Pelletier et al., 2019).
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Including Synthetic Aperture Radar (SAR) data in classification models may improve
crop mapping accuracies because of the increased cloud cover independent data avail-
ability and the physical and structural properties of the SAR signal over plant canopies
which complements optical information from MS sensors (Blickensdörfer et al., 2022).
In recent years, Sentinel-1 (S1) and Sentinel-2 (S2) have been successfully exploited to-
gether for LCM, performing better than the use of a single sensor and thus, demonstrat-
ing how the availability and usage of both sensors is beneficial (Ienco et al., 2019; Blick-
ensdörfer et al., 2022; J. Li et al., 2022). Recently, the European Space Agency (ESA)
has moved the WorldCereal1 project to the operational phase. The project aims to
demonstrate the feasibility of global crop mapping at field scale using open Earth Ob-
servation (EO) datasets, such as Sentinel-1, Sentinel-2, Sentinel-3, and Landsat 8. The
project will exploit the complementarity between optical and radar time series, with
radar data providing structural information and optical data sensitive to biophysical
parameters.
Multi-modal image fusion in remote sensing, and specifically for SITS, have shown
that most fusion schemes outperform single-sensor models. Although, among the fu-
sion schemes, they have advantages and drawbacks at specific settings (Ofori-Ampofo
et al., 2021; Sainte Fare Garnot et al., 2022). For example, Ofori-Ampofo et al. (2021)
explored three types of fusion for Sentinel-2 (S2) and Sentinel-1 (S1) SITS classifica-
tion, finding that layer-level fusion overall performed the best, but decision-level fusion
performed better in dominant classes while layer-level fusion gained the advantage of
performance in minority classes. Additionally, Sainte Fare Garnot et al. (2022) ex-
plored four types of fusion for Sentinel-2 (S2) and Sentinel-1 (S1) SITS on three clas-
sification tasks, finding that for all tasks using both modalities improved the overall
performance, however, the late fusion scheme outperformed the others on parcel-based
classification. These findings highlight the difficulty in choosing a fusion approach, as
the specific settings related to the reference data (e.g. class imbalance) or classifica-
tion task (e.g. parcel-based classification, semantic segmentation, etc) will require a
specific fusion scheme to achieve the best performance.
Although most research and development of methods to improve LCM have increased
significantly due to the large availability of multi-sensor SITS datasets, the majority of
these methods still belong to the supervised classification setting (Hong et al., 2021;
J. Li et al., 2022). The availability and quality of reference data needed for creating
these maps are rarely sufficient for large areas and/or over long timespans (Capliez et
al., 2023), and the need for reference data is required and exacerbated for deep learning.
In standard supervised classification, the reference data are only valid for the period
(reference year, for instance) and geographical area corresponding to their acquisition.

1https://esa-worldcereal.org/en
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Training a classifier with imagery from a different period than the reference data can
produce poor LCM due to differences in weather conditions, cloud cover, and other
factors between the two time periods, leading to inaccurate classifications and limiting
their usage for future LCM in the following years or in other areas (Tardy et al., 2017).
These differences between time periods and regions due to environmental conditions
result in a shift in the probability distribution of the source domain and target domain
(e.g. different time or region) (Capliez et al., 2023; Nyborg et al., 2022). Here, we will
focus on the scenario where the shift is produced by a change in the time period (i.e
year) the information comes from, on the same region, and same sensor information
(multi-sensor SITS). One approach to addressing this issue is to reuse models trained
on past years when reference data was available. This is particularly important because
obtaining updated reference data can be costly. By leveraging previous efforts, the need
for fresh reference data, which may be difficult to collect, can be reduced. In addition,
transfer learning strategies become crucial to achieving this goal.
In the field of computer vision, the Unsupervised Domain Adaptation (UDA) approach
provides methods and strategies to cope with distribution shifts, for a model trained
in a labelled source domain and transferred to an unlabelled target domain (Wilson &
Cook, 2020). If this approach is successful, we can train a classification model that can
provide a reliable LCM using a SITS on a given year for which no specific reference data
is provided (target domain), as well as both sparsely annotated reference data and SITS
from a previous year (source domain). However, still many approaches deal with UDA
in the context of optical/MS image analysis, but only a few deal with SITS and multi-
sensor SITS. In the context of temporal UDA, a new framework that combines UDA
and self-training approaches has been proposed by Capliez et al. (2023), where pseudo-
labels are selected from the target domain (on which three deterministic conditions have
to be satisfied) to improve the domain-invariant representation of the features learned
by the model.
Unsupervised Domain Adaptation (UDA) is a challenging task but has shown promis-
ing results in remote sensing to produce land cover maps in an unlabelled target domain.
However, situations like reference data scarcity and class imbalance in the source do-
main and, changes in the class distribution and in general land cover change towards the
target domain, make the task even more challenging. Here we hypothesize that having
more than one modality of SITS could help to provide a more robust feature represen-
tation, thus, the study is set up in the multi-sensor (Sentinel-2 and Sentinel-1) temporal
UDA problem, where both source and target domain are multi-sensor. The goal is to
train a multi-sensor land cover classifier with labelled samples from the source domain
and make inference on the unlabelled target domain. Building on previous research,

5
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the objective of this study is to evaluate the potential of combining dense S2 and S1
time series for improving crop type mapping in supervised and UDA settings. More
specifically, this study addresses the following research questions:

1. How does the use of single-sensor SITS and multi-sensor SITS (the fusion of
Sentinel-2 (S2) (optical) and Sentinel-1 (S1) (radar)) affect the supervised clas-
sification model performance?

2. Does the performance based on optical-radar layer fusion differs from decision
fusion?

3. Hoes does the use of single-sensor SITS and multi-sensor SITS (the fusion of
Sentinel-2 (S2) (optical) and Sentinel-1 (S1) (radar)) helps to improve the clas-
sification model performance in a Unsupervised Domain Adaptation (UDA) set-
ting?

4. How does the multi-sensor SITS approach can be implemented into the frame-
work of Unsupervised Domain Adaptation (UDA)?

Experimental evaluation is carried out on a rural study site located in Burkina Faso,
referred as Koumbia site and characterized by a mostly agricultural land cover types
(crop types as well as natural and built-up classes). We consider multi-sensor (Sentinel-
2 (S2) and Sentinel-1 (S1)) data coming from three different years (2018, 2020 and
2021) and perform a transfer assessment to each pair of years.
The rest of the manuscript is organized as follows: Section 2 presents the literature on
multi-sensor land cover classification and unsupervised domain adaptation. Section 3
describes the study site and associated reference and multi-sensor SITS data. Section 4
describes the architecture of the models used for the experiments as well as the exper-
imental settings and Section 5 presents the results of the experiments. Finally, Section
6 will provide the conclusions.

6



Theoretical background

2 Theoretical background
Satellite Image Time Series (SITS) comprises images of the same area acquired at
different dates by the same sensor (or constellation of sensors). The latest satellite
constellations are capable of acquiring SITS with high spectral, spatial and temporal
resolutions (Drusch et al., 2012). For instance, the two Sentinel-2 satellites provide,
since March 2017, worldwide images every five days (at the equator), freely distributed,
within 13 spectral bands at spatial resolutions varying from 10 to 60 m. The Landsat
programme has been taking images since July 1972, currently operating with Landsat
7, 8, and 9 satellites. And the two Sentinel-1 satellites, since April 2015, provide data
from a dual-polarized C-band SAR enabling imaging through clouds every 6 days, al-
though currently Sentinel-1B is no longer operational, increasing the revisiting time to
12 days2.
In this section, we will present advances in processing SITS for land cover mapping
using deep learning methods in three settings: Supervised classification, multimodal
data fusion, and Unsupervised Domain Adaptation.

2.1 Supervised classification of satellite image time series for land
cover mapping

A supervised classification task of SITS is defined by set of training samples (𝑋,𝑌 ),
such as (𝑋,𝑌 ) = {(𝒙𝟏,𝑦1), ..., (𝒙𝒏,𝑦𝑛)} where 𝑛 is the number of instances or samples.
The pair (𝒙𝒊,𝑦𝑖) represents the training sample 𝑖 where 𝒙𝒊 is a 𝐷-variate time series
pixel of length 𝑇 associated with the label 𝑦𝑖 ∈ 𝑌 = {1, ...,𝐾} for 𝐾 classes. More
in detail, 𝒙𝒊 can be expressed by 𝒙𝒊 = (𝒙𝒊(𝟏), ...,𝒙𝒊(𝑻 )), where 𝑥𝑖(𝑡) = (𝑥1𝑖 (𝑡), ...,𝑥

𝐷
𝑖 (𝑡))

for a timestamp 𝑡. The goal is to build a classifier ℎ parameterized by Θ such that
ℎΘ ∶𝑋 → 𝑌 . In supervised classification, the model is meant to be applied on test data
that is drawn from the same distribution of the training samples it was trained on.
The current state-of-the-art algorithms used for producing maps are classical machine
learning methods (i.e. Support Vector Machines (SVM) and Random Forest (RF))
(Khatami et al., 2016; Phiri et al., 2020). These algorithms are typically applied at
the pixel-level on the stack of multi-spectral images found in the SITS. However, these
algorithms are not aware of the temporal dimension that structures SITS. This means
that the temporal order of the images has no impact on the results (Pelletier et al., 2019).
Surprisingly, even if the images were rearranged in the series, the model and accuracy
would remain the same. As a result, there is a loss of temporal behavior for classes

2https://sentinels.copernicus.eu/web/sentinel/-/end-of-mission-of
-the-copernicus-sentinel-1b-satellite/
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that evolve over time, such as various forms of vegetation that are subject to seasonal
changes.
To overcome this issue, researchers have explored the use of Deep Neural Networks
(DNN) that are able to learn feature representations that capture time dependencies.
Deep learning has been applied using Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN) for handling the temporal dimension (Ndikumana et al., 2018;
Pelletier et al., 2019; Zhong et al., 2019). Ndikumana et al. (2018) assessed the useful-
ness of Sentinel-1 (S1) SITS for crop mapping comparing the performance of two RNN
approaches using Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU),
against classical machine learning approaches. Their results show that S1 SITS pro-
vided good performances in all models, although both versions of RNN outperforms
k-nearest neighbor, random forest and support vector machines. Pelletier et al. (2019)
propose the use of one dimensional (temporal) CNN for SITS based LCM, referred
as TempCNN. In this model, the convolutional operator is performed on the tempo-
ral dimension of the SITS data with the purpose to manage and model short and long
time correlations. Similarly, Zhong et al. (2019) evaluated two models, one based on
LSTM and the other on 1D-CNN. Both Pelletier et al. (2019) and Zhong et al. (2019)
show that temporal convolutions outperform RNN for SITS classification. Garnot, Lan-
drieu, Giordano, and Chehata (2019) propose a modified self-attention-based mecha-
nism architecture named Pixel Set Encoder Temporal Attention Encoder (PSE-TAE)
developed for crop mapping. Their results show that PSE-TAE is able to extract more
expressive features exploiting both the spatial and temporal dimensions than CNN and
GRU, resulting in better performance. Other approaches have also explored the use
of transformers (Yuan et al., 2022), and 3D-CNN (R. Li et al., 2022). Rußwurm, Pel-
letier, Zollner, Lefèvre, and Körner (2020) presented a dataset for SITS classification
and made a comparison of different approaches, finding that the attention-based trans-
former model outperformed the recurrent models (i.e LSTM and RNN based models)
and the CNN based models (TempCNN and InceptionTime).

2.2 Multimodal SITS data fusion

In a broad sense, the term multimodal data fusion in remote sensing (RS) as defined
by J. Li et al. (2022), includes: multisource data fusion, which comprises the technical
specifications of the sensor and determines the internal characteristics of the product
(e.g. imaging mechanism and the resolutions); and multitemporal data fusion, which
is defined by the conditions of the acquisition determined by external properties (e.g.
acquisition time or observation angle). In this study, the term multimodal comprises
multisource (a.k.a multisensor) data fusion of optical (Sentinel-2) and SAR (Sentinel-1)
SITS for land cover classification.

8
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Although a large amount of multimodal RS data has become readily available, each
modality can only capture few specific properties and hence cannot fully describe the
observed scenes, which poses a great constraint on subsequent applications (J. Li et
al., 2022). Naturally, multimodal RS data fusion is a feasible way to break out of the
dilemma induce by unimodal data. By integrating the complementary information ex-
tracted from multimodal data, a more robust and reliable decision can be made in many
tasks, including, as is our interest, land cover classification. More specifically, includ-
ing both optical and SAR data in classification models can enrich the information for
discriminating targets and improve performances due to contributing information on
reflectance (optical) and the physical and structural properties (SAR), additionally, the
cloud cover independent characteristic of SAR helps to have a better representation of
the changes over time compared to using only optical data (Ofori-Ampofo et al., 2021).
Multi-modal image fusion can be grouped into input (a.k.a pixel), layer (a.k.a feature),
and decision levels (Zhou et al., 2019). In remote sensing, the input fusion combines
image bands from multi-sensor data, usually through resampling and concatenation,
or image to image co-registration. Layer fusion requires the extraction and concate-
nation of high-level features allowing the model to learn a feature representation for
each modality. Lastly, in decision fusion each modality is independently processed by
a model to generate class confidence scores (in the classification task), which are com-
bined statistically (e.g. averaged) to yield a final fused decision. Figure 1 depicts the
three data fusion scenarios in a general Deep Learning (DL) framework.

Figure 1: Levels of multimodal data fusion approaches in deep learning
(Zhou et al., 2019)

Although the use of Sentinel-1 (S1) and Sentinel-2 (S2) have increased the perfor-

9
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mance of classification models, most of the studies use traditional machine learning
approaches (e.g. random forest) and very few studies use deep learning approaches to
leverage the use of these datasets. Ienco et al. (2019) combined Sentinel-1 (S1) and
Sentinel-2 (S2) SITS processing the information on independent encoders, where each
encoder has also two branches that processes the SITS with a CNN and attentive GRU
to extract spatial and temporal features separately. The feature representation that the
network was able to learn allowed to have better performances compared to other com-
peting methods and input level fusion using random forest. Ofori-Ampofo et al. (2021)
evaluated the use of Sentinel-2 and Sentinel-1 SITS from crop type mapping using PSE-
TAE, and assessed different model configurations to perform data fusion at the three
levels (input, layer, and decision). All approaches were able to perform better that a
single modality, however, input and layer fusion performed better than decision fusion
for underrepresented classes. Similarly, Sainte Fare Garnot et al. (2022) explored four
types of fusion for Sentinel-2 and Sentinel-1 SITS, but on three classification tasks (par-
cel classification, pixel-based segmentation, and panoptic parcel segmentation), finding
that the multimodal approach based on attention-based models can outperform single
modality models. A different approach is done by Gbodjo, Montet, Ienco, Gaetano, and
Dupuy (2021), where they combine Sentinel-2 and Sentinel-1 SITS and SPOT VHR
image, for land cover mapping through a three-branch patch-based CNN model, using
different per-source encodersto deal with the specificity of the input signals.

2.3 Unsupervised domain adaptation

A bottleneck of supervised classification in remote sensing is the need of training the
model on reference data that are specific to every image acquisition (Tuia et al., 2016),
posing serious challenges to their use in situations characterized by a reduced amount
of (or unavailable) reference data (Capliez et al., 2023). Applying a model trained on
an image with it’s corresponding reference data to a new image, often provides poor
results. This is because of differences in the spectra observed in the new image, even
though representing the same types of objects. The differences can be related to a series
of deformations, or shifts, related to a variety of effects such as a biased sampling in
the spatial domain (typically if the ground sampling has been focused on a region non-
representative of the new scene), changes in the acquisition conditions like weather
(Tardy et al., 2017).
In the general field of computer vision, a domain consists of a feature space and a
marginal probability distribution (i.e. the features of the data and the probability dis-
tribution of those features in the dataset). By this definition, a change in domain may
result from either a change in feature space or a change in the marginal probability
distribution (Wilson & Cook, 2020). In remote sensing, a change in the feature space
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might be due to a change in climate, weather, or environmental change, and a change
in the marginal probability distribution might be due to a change in the geographical
region. Figure 2 presents some scenarios where there is a change in domain in remote
sensing imagery and there is a need to adapt a model to new images, on the left there
are changes in the spatial domain, on the middle changes in image acquisitions and
possible sensor, and on the right includes changes in the spatial and temporal domains.

Figure 2: Domain Adaptation scenarios in remote sensing
(Tuia et al., 2016)

Learning a discriminative classifier or other predictor in the presence of a shift between
training and test distributions is known as Domain Adaptation (DA) (Liu et al., 2022).
Unsupervised domain adaption (UDA) methods have the main objective to transfer a
model trained on a labelled source domain to an unlabelled target domain. We con-
sider classification tasks where 𝑋 is the input space and 𝑌 = {1,2, ...,𝐾} is the set of
𝐾 possible labels. Moreover, we have two different distributions over 𝑋 × 𝑌 , called
the source domain 𝐷𝑠 and the target domain 𝐷𝑡. An unsupervised domain adaptation
learning algorithm is then provided with a labeled source sample 𝑋𝑠 drawn i.i.d. from
𝐷𝑠, and an unlabeled target sample 𝑋𝑡 drawn i.i.d. from 𝐷𝑡, providing only labeled
samples on the source domain 𝑌 𝑠, thus, 𝐷𝑠 = {𝑋𝑠,𝑌 𝑠} and 𝐷𝑡 = {𝑋𝑡}.

𝑋𝑠 = {(𝒙𝒔𝒊 ,𝑦
𝑠
𝑖 )}

𝑛
𝑖=1 ∼ (𝐷𝑠)𝑛; 𝑋𝑡 = {𝒙𝒕𝒊}

𝑁
𝑖=𝑛+1 ∼ (𝐷𝑡)𝑛

′
,

with 𝑁 = 𝑛+𝑛′ being the total number of samples. The goal of the learning algorithm
is to build a classifier ℎΘ ∶ 𝑋 → 𝑌 with a low target risk while having no informa-
tion about the labels of 𝐷𝑡. Adapting a model trained on an image (or set of images,
e.g. time series) to another can be performed in different ways. In remote sensing,
two approaches have shown promising results in the last years, domain invariant (e.g.
adversarial learning) (Ganin et al., 2016) and self-training (semi-supervised learning)
(Chapelle et al., 2009) methods.
The goal of these methods is to generate similar feature distributions for the source and
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target data, known as domain-invariant features. In this regard, the adversarial learning
setting uses a domain discriminator to minimize the divergence between the features of
the source and target domains, in other words, it aims to generate the desired domain-
invariant features. A feature extractor 𝐺𝑓 (⋅) ∈ ℝ is applied onto 𝑥𝑖 to extract a feature
representation 𝐺𝑓 (𝒙𝒊) ∈ℝ𝑘, minimizing 𝑑[𝐺𝑓 (𝒙𝒔𝒊 ),𝐺𝑓 (𝒙𝒕𝒊)], where 𝑑 is the divergence.
In addition to training a label predictor 𝐺𝑦(⋅) on source data, 𝐺𝑓 (⋅) is also optimized
to generate similar feature distributions for the source and target data, following the
supervision signal of a domain discriminator 𝐺𝑑(⋅) ∶ ℝ𝑘 → (0,1). The remote sensing
field has intensively investigated one of these techniques called Domain Adversarial
Neural Networks (DANN) (Ganin et al., 2016), where the domain classifier is asso-
ciated with a Gradient Reversal Layer (GRL) that enforces the features extracted by
the encoder to be invariant to the domains. In the context of SITS, Wang, Zhang, He,
and Zhang (2021) proposed the Phenology Alingment Network, a cross-region UDA
method for SITS, that learns domain invariant features by minimizing the Maximum
Mean Discrepancy loss. For the temporal UDA scenario, Tardy, Inglada, and Michel
(2019) uses Optimal Transport for the case of temporal unsupervised domain adapta-
tion from multiple source domain (multiple annual SITS) to a specific target domain
(annual SITS). Recently, Capliez et al. (2023) leveraged the specificity of the temporal
UDA scenario conceiving a process based on the spatial consistency between the two
SITS pixels allowing them to use both adversarial learning and self-training. While
the adversarial learning strategy is implemented by means of gradient reversal layer, in
order to extract domain-invariant features, the self-training stage selects pseudo-labels
on the target domain leveraging spatial consistency between domains.
Inspired by the semi-supervised learning strategies, in the self-training setting (Sohn
et al., 2020), a model is trained iteratively by assigning pseudo-labels to the set of
unlabeled training samples and, successively, enriching the current labelled training
set with pseudo-labeled samples on which the model exhibited a high confidence. By
learning from both labeled source data and pseudo-labeled target data, self-training
methods implicitly encourage feature alignment for each class without restricting the
model to operate on domain-invariant features (Zou et al., 2020; Morerio et al., 2020).
However, the domain shift often results in increased pseudo-label noise and there has
been approaches deal with this issue e.g. co-training (Chen et al., 2011), tri-training
(Saito et al., 2017), conditional generative models (Morerio et al., 2020), confidence
regularization (Zou et al., 2020), or Adversarial-Learned Loss for Domain Adapta-
tion (ALDA) which uses a noise correction domain discriminator (Chen et al., 2020).
Recently, Nyborg et al. (2022) proposed a method called TimeMatch where crop classi-
fication models are adapted to an unlabeled target region by self-training on temporally
shifted SITS in a cross-region UDA scenario. The model explicitly captures the under-
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lying temporal discrepancy of the data by estimating the temporal shift between two
regions by generating pseudo-labels using the estimated temporal shift from target to
source.
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3 Data
In this section, we will describe the study area and the associated reference data, as
well as the procedure to query, download, and preprocess the Sentinel-2 and Sentinel-1
SITS.

3.1 Study area

The study area is situated in the sub-humid sudanian zone, around the town of Koumbia
in the southwest of Burkina Faso. It covers an area of about 2338 km2, with forests and
natural Savannah covering most of the surface, interspersed with about 35 % of land
used for rain-fed agricultural production, mainly smallholder farming. The main crops
cultivated in this area are cotton and cereals such as maize, sorghum, and millet, with
leguminous and oleaginous crops also being grown. Figure 3 shows the study site with
the locations of the reference data.

Figure 3: Koumbia Study area

3.2 Data availability

3.2.1 Reference data
Reference data for 2018, 2020, and 2021 was obtained from a large agricultural land
cover dataset available online (Jolivot et al., 2021). Field surveys were conducted yearly
around the growing peak of the cropping season from 2013 to 2021, although during
2019 no fieldwork was conducted. GPS way-points were gathered following an oppor-
tunistic sampling approach along the roads or tracks according to their accessibility,
while ensuring representation of the existing cropping practices in place.
As previously described in (Capliez et al., 2023), records were provided on different
types of non-crop classes (e.g. natural vegetation, settlement areas, water bodies) to
differentiate crop and non-crop classes. Additional non-crop reference polygons were
obtained by photo-interpretation of very high-resolution optical satellite images. The
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final reference data was assembled in a GIS vector file, containing a collection of poly-
gons, each attributed with a land cover category. To ensure consistency, the same sur-
face was kept for the three reference years by performing a year by year intersection of
the polygons of the original database. The polygons were rasterized with a pixel sized
of 10 m and aligned with the satellite imagery described in section 3.2.2. A summary
of the reference data can be found in Table 1.
The changes occurring in the reference data from one year to another, which mainly
occur between crop classes (Figure 4), were measured. For the year 2018, the surface
of cotton was about two times that of oleaginous/leguminous when this ratio is balanced
for years 2020 and 2021, however, as can be seen in Figure 5, this does not mean that
there were not many changes in those two classes in the years 2020 and 2021, in fact,
only a small fraction of the cotton crops from 2020 remained in 2021 (22%), while
most of the cotton from 2020 was turned into cereals in 2021 (65%) and 38% of cereals
from 2020 were turned into cotton in 2021. Figure 5 quantifies the changes in terms of
land cover classes between each couple of reference years. Bare soil/built-up and water
classes remained mostly unchanged, and few changes occurred on non-crop classes,
mainly due to occasional shifts in the density of natural vegetation or conversion to
active cropland.

Figure 4: Land Cover Change at the polygon level

3.2.2 Satellite imagery
Satellite Image Time Series (SITS) of Sentinel-1 RTC and Sentinel-2 L2A images were
accessed from Microsoft Planetary Computer (MPC)3. Briefly, MPC is a platform for
environmental sustainability that provides access to petabyte-scale geospatial data and

3https://planetarycomputer.microsoft.com
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Figure 5: Land Cover Change at the pixel level

Table 1: Reference data summary over the years 2018, 2020, and 2021

Class name Class ID 2018 2020 2021

# Polygons (% Polygons)
Cereals ■ 1 330 (33.07) 230 (23.05) 268 (26.85)
Cotton ■ 2 153 (15.33) 139 (13.93) 121 (12.12)

Oleag./Legum. ■ 3 161 (16.13) 281 (28.16) 263 (26.35)
Grassland ■ 4 123 (12.32) 122 (12.22) 113 (11.32)
Shrubland ■ 5 87 (8.72) 83 (8.32) 90 (9.02)

Forest ■ 6 88 (8.82) 82 (8.22) 82 (8.22)
Baresoil ■ 7 46 (4.61) 51 (5.11) 51 (5.11)

Water ■ 8 10 (1.00) 10 (1.00) 10 (1.00)
Total 998

# Pixels (% Pixels)
Cereals ■ 1 13056 (16.33) 9731 (12.17) 11435 (14.30)
Cotton ■ 2 7672 (9.59) 6971 (8.72) 6575 (8.22)

Oleag./Legum. ■ 3 3595 (4.50) 7950 (9.94) 7316 (9.15)
Grassland ■ 4 13108 (16.39) 12998 (16.26) 11100 (13.88)
Shrubland ■ 5 23122 (28.92) 22547 (28.20) 24325 (30.42)

Forest ■ 6 17369 (21.72) 17435 (21.80) 16984 (21.24)
Baresoil ■ 7 835 (1.04) 1125 (1.41) 1022 (1.28)

Water ■ 8 1205 (1.51) 1205 (1.51) 1205 (1.51)
Total 79962
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machine learning tools. It is a cloud-based service that enables researchers, policy-
makers, and other stakeholders to analyze and model environmental data at a global
scale. MPC uses the SpatioTemporal Asset Catalog (STAC)4 API to query the satellite
imagery, making it easier to filter and search imagery based on spatial and temporal
criteria.
Sentinel-2 (S2) is a satellite mission launched by the European Space Agency (ESA)
as part of the Copernicus program. It consists of two twin satellites in the same orbit,
but phased 180º, with a repetition frequency of 5 days or less. Each satellite carries a
Multi-spectral Instrument (MSI) with 13 spectral channels (bands) in the Visible/Near
Infrared (VNIR) and Shortwave Infrared (SWIR) part of the electromagnetic spectrum.
The MSI acquires images at 3 spatial resolutions: 10 m, 20 m, and 60 m. The radio-
metric and spectral resolutions of each band are listed in Table 2.

Table 2: Sentinel-2 bands and their spatial and radiometric resolutions
Band Resolution (m) Central wavelength (nm) Bandwidth (nm) Description

B1∗ 60 443 21 Ultra blue (Coastal and aerosol)
B2 10 490 66 Blue
B3 10 560 36 Green
B4 10 665 31 Red
B5 20 705 15 Visible and near infrared (VNIR)
B6 20 740 15 Visible and near infrared (VNIR)
B7 20 783 20 Visible and near infrared (VNIR)
B8 10 842 106 Visible and near infrared (VNIR)

B8A 20 865 21 Visible and near infrared (VNIR)
B9∗ 60 940 20 Short wave infrared (SWIR)

B10∗ 60 1375 31 Short wave infrared (SWIR)
B11 20 1610 91 Short wave infrared (SWIR)
B12 20 2190 175 Short wave infrared (SWIR)

∗ 60 m bands were excluded from the study

Sentinel-2 (S2) L2A imagery has a 5 day revisit time in the study area, making a total
of 73 time-steps per year (Figure 6). Imagery was queried for the bounding box of the
study area and the three years corresponding to the study period (2018, 2020, 2021). In
addition, the 60 m resolution bands were discarded and 20 m bands were re-sampled to
10 m using nearest neighbor interpolation. No cloud cover filter was used at this stage,
collecting all the imagery available, however, the Scene Classification Layer (SCL),
provided by ESA in the S2 L2A product, was used to mask pixels corresponding to
the following categories: no data pixels, saturated, cloud shadows, unclassified pixels,

4https://stacspec.org/en
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medium probability clouds, high probability clouds, and cirrus clouds. Linear interpo-
lation was used to impute masked pixels and missing acquisitions. Thus, harmonizing
the SITS to have the 73 time-steps on each of the three years.

Figure 6: Sentinel-1 & 2 time series acquisitions and time gaps. Time gaps in both
Sentinel-2 and Sentinel-1 relate to no acquisition being available in the L2A and RTC

products respectively.

The Sentinel-1 mission is a constellation of two polar-orbiting satellites, operating
day and night performing C-band synthetic aperture radar imaging. MPC provides
Sentinel-1 Radiometrically Terrain Corrected (RTC) data derived from the Ground
Range Detected (GRD) Level-1 products produced by ESA and provides the images
at 10m pixel size. Radiometric Terrain Correction RTC accounts for terrain variations
that affect both the position of a given point on the Earth’s surface and the brightness of
the radar return, as expressed in radar geometry. Without treatment, the hill-slope mod-
ulations of the radiometry threaten to overwhelm weaker thematic land cover-induced
backscatter differences.
Sentinel-1 RTC imagery has a 6 day revisit time, however, due to the lost of Sentinel
1-B on 2021, we only included data for Sentinel 1-A, having a 12 day revisit time and
making a total of 31 time-steps per year (Figure 6) for the ascending pass. The dataset
contains VH and VV polarizations. Similar to the S2 SITS, linear interpolation was
used to impute missing acquisitions. Thus, harmonizing the SITS to have the 31 time-
steps on the three years.
As suggested by Pelletier et al. (2019), to preserve the overall shape of the time series,
feature normalization was performed with a mix-max normalization per feature across
all images, using the 2% (98 %) percentile instead of the minimum (maximum) value.
This helps to overcome the sensitivity of this method to extreme values. Finally, pixel
extraction of the SITS were done using the pixels of the reference data, for S2 the
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dimensions of the final pixel time series are: 79962 pixels, 10 spectral bands, and 73
time-steps. While for S1, we considered a 9x9 neighborhood of the reference pixels
to diminish the speckle effect and stacked the VH and VV polarization bands into a
single one, having the time series the following dimensions: 79962 patches, 9x9 spatial
neighborhood, 2 polarizations, 31 timestamps.
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4 Methods
This section presents the model architectures and details of their implementations used
for the experiments. First, we briefly describe the base model architectures used to
process Sentinel-2 and Sentinel-1 SITS. Then we proceed to describe unsupervised do-
main adaptation setting, and the framework we use to deal with the transfer tasks. We
continue to describe our multimodal data fusion implementations for the experiments in
the supervised and UDA settings. And finally, we provide the details of the experimen-
tal settings which include the splitting procedure of the data, and the implementation
settings of the experiments.

4.1 Baseline model architectures

We use random forest as the state-of-the-art algorithm for SITS classification, and Tem-
pCNN and InceptionTime as the leading deep learning algorithms SITS classification,
the three algorithms were used with Sentinel-2 SITS. Additionally, a 2D-CNN was used
for Sentinel-1 SITS. All algorithms are briefly introduced.
4.1.1 Random Forest
Random Forest is an ensemble of decision trees (Breiman, 2001) that has been widely
used for SITS classification. The algorithm works by randomly selecting a subset of
features and a subset of the training data. Then, it creates a decision tree based on the
selected features and data. This process is repeated multiple times, and the outputs of
all the decision trees are combined to make the final prediction.
4.1.2 TempCNN
The model proposed by Pelletier et al. (2019) has been developed by applying 1D con-
volutional layers that are capable of extracting relevant features from time series data.
The extracted features are then passed through a fully connected layers for classifica-
tion. The use of batch normalization is another important feature of the TempCNN
model. This technique helps to stabilize the training process and improve generaliza-
tion performance. By normalizing the input to each layer, batch normalization enables
the model to learn more effectively, leading to better results.
4.1.3 InceptionTime
InceptionTime is a deep neural network architecture that was proposed by Fawaz et al.
(2020) for time series classification inspired by the Inception network (Szegedy et al.,
2015). The core building block of InceptionTime is the InceptionModule, which ef-
ficiently extracts features from time series data using a combination of convolutional
filters of different sizes. The InceptionModule is designed to capture both local and
global patterns in time series data, allowing the model to build a hierarchical structure
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Figure 7: TempCNN architecture
(Pelletier et al., 2019)

to model short-term and long-term dependencies in time series data. InceptionTime
consists of multiple InceptionBlocks, which are stacked together to form the network.
Each InceptionBlock contains one or more InceptionModules, and is designed to cap-
ture increasingly complex patterns in the time series data as the network deepens. The
model uses residual connections to be able to implement a deeper architecture, avoiding
the vanishing/exploding gradient problem.

Figure 8: Inception module
(Fawaz et al., 2020)

4.1.4 Sentinel-1 patch-based CNN
Sentinel-1 (S1) data will mainly be used to complement Sentinel-2 (S2) in a multimodal
approach, however, a S1-only model will also be trained and evaluated for reference.
We consider a two-dimensional convolutional neural network (2D-CNN), as proposed
by (Gbodjo et al., 2021). As described in section 3.2.2 the data is organized as a stacked
image with as many bands as the number of time-steps times two, since S1 data have
backscatter values with two polarizations: VV and VH. Patches of size 9x9 pixels are
extracted from the stacked image are then concatenated and constitute the input infor-
mation for the model.
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4.2 Unsupervised domain adaptation

In this section we focus on the Unsupervised Domain Adaptation (UDA) setting. We
begin describing the Domain Adversarial Neural Networks (DANN) model which aims
to generate domain-invariant features, and then continue with the Spatially-Aligned
Domain-Adversarial Neural Network (SpADANN) framework, which expands DANN
by including a self-training strategy to improve the transfer taks to the target domain.
4.2.1 Domain Adversarial Neural Network (DANN)
Domain Adversarial Neural Networks (DANN) is a neural network architecture that
is trained on labeled data from the source domain and unlabeled data from the tar-
get domain (Ganin et al., 2016). The network uses a Gradient Reversal Layer (GRL)
which has no parameter associated with it. During the forward pass the GRL acts as
an identity transformation, while during the backpropagation takes the gradient from
the subsequent level and changes its sign, i.e., multiplies it by -1, before passing it to
the preceding layer. This GRL is inserted between the feature extractor 𝐺𝑓 (⋅) and the
domain classifier 𝐺𝑑(⋅), resulting in the architecture shown in Figure 9. Equation 1
shows the loss function.

Figure 9: Domain Adversarial Neural Network architecture
(Ganin et al., 2016)

𝐿𝐷𝐴𝑁𝑁 (𝑋𝑠,𝑌 𝑠,𝑋𝑡
|Θ𝑓 ,Θ𝑦,Θ𝑑) = 𝐿𝑦(𝑋𝑠,𝑌 𝑠

|Θ𝑓 ,Θ𝑦)−𝜆𝐿𝑑(𝑋𝑠,𝑋𝑡
|Θ𝑓 ,Θ𝑑) (1)

where𝐿𝑦(𝑋𝑠,𝑌 𝑠
|Θ𝑓 ,Θ𝑦) is the loss associated to the label classifier, while 𝜆𝐿𝑑(𝑋𝑠,𝑋𝑡

|Θ𝑓 ,Θ𝑑)
is the loss related to the domain classifier modeling a binary classification problem in
which class label represents the possibility to belong exclusively to the source or the
target domain.
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For the scenario of SITS classification, each sample 𝑥𝑖 ∈ℝ𝑇×𝐵 is a SITS pixel defined
over 𝑇 timestamps and characterized by 𝐵 spectral bands.
4.2.2 Spatially-Aligned DANN (SpADANN)
The Spatially-Aligned Domain-Adversarial Neural Network (SpADANN) framework
has been recently proposed for domain adaptation in SITS classification (Capliez et
al., 2023). In order to improve the classification of pixels from the target domain, the
SpADANN framework leverages a self-training strategy to associate pseudo-labels with
a subset of data from the target domain. This is done to inject pseudo-supervision into
the training process and improve the performance of the land-cover classifier subnet-
work. Instead of using a threshold to select high-confidence samples, target pixels are
selected based on two criteria: spatial consistency and correct land-cover prediction
on the corresponding source pixel. The resulting pseudo-labeled target samples act
as anchor points between the source and target domains, exploiting model output sta-
bility and reducing the distribution gap between domains. This process is specific to
the land-cover mapping temporal UDA problem and does not require a hyperparameter
threshold. Figure 10 shows the self-training procedure used by SpADANN.

Figure 10: Self-training loop for the SpADANN framework
(Capliez et al., 2023)

Capliez et al. (2023) leveraged the specificity of the land cover mapping temporal UDA
problem conceiving a process based on the spatial consistency between the two SITS

23



Methods

pixels 𝒙𝒔𝒊 and 𝒙𝒕𝒊 sharing the same spatial location (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝒙𝒕𝒊) = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝒙𝒔𝒊 )). On
that way, they focused the pseudo-labelling selection process based on two criteria.
The first criteria is based on spatial consistency:

𝐺𝑦(𝒙𝒔𝒊 |𝜃𝑓 , 𝜃𝑦) = 𝐺𝑦(𝒙𝒕𝒊|𝜃𝑓 , 𝜃𝑦)

given that (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝒙𝒕𝒊) = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝒙𝒔𝒊 )), and the second criteria requires that the land
cover classifier 𝐺𝑦 supplies the correct prediction for the source sample:

𝐺𝑦(𝒙𝒔𝒊 |𝜃𝑓 , 𝜃𝑦) = 𝑦𝑠𝑖

Thus, this selection process chooses target samples that remain stable in terms of model
output prediction, allowing to select pseudo-labelled samples to act as anchor points
between the source and the target domains (Capliez et al., 2023). The loss associated
with the pseudo-labels is defined as:

𝐿𝑝(𝑋𝑠,𝑋𝑡,𝑌 𝑠,𝑌 𝑡
|Θ𝑓 ,Θ𝑦) =

∑

𝒙𝒕𝒊∈𝑋𝑡

1{𝐺𝑦(𝒙𝒔𝒊 )=𝐺𝑦(𝑥𝑡𝑖)𝑎𝑛𝑑𝐺𝑦(𝑥𝑠𝑖 )=𝑦
𝑠
𝑖 }
𝐻(𝑦̂𝑡𝑖,𝐺𝑦𝑝𝑟𝑜𝑏(𝒙

𝒕
𝒊)) (2)

where 1𝑐𝑜𝑛𝑑 is an indicator function that returns 1 if the condition is verified and 0
otherwise, 𝐺𝑦𝑝𝑟𝑜𝑏(⋅) provides the model output distribution over the possible land cover
set, 𝐻(⋅) is the classical Categorical Cross-Entropy function, 𝑌 𝑡 is the whole set of
possible pseudo-label for the target domain and 𝑦̂𝑡𝑖 is the pseudo-label land cover class
with the highest model output probability 𝐺𝑦𝑝𝑟𝑜𝑏(𝒙

𝒕
𝒊) for the pixel 𝒙𝒕𝒊 coming from the

target domain.
Combining 𝐿𝑝 from equation 2 into the 𝐿𝐷𝐴𝑁𝑁 defined in equation 1, we get the final
loss implemented for SpADANN.

𝐿𝑆𝑝𝐴𝐷𝐴𝑁𝑁 = (1−𝛼)×𝐿𝐷𝐴𝑁𝑁 (𝑋𝑠,𝑋𝑡,𝑌 𝑠
|Θ𝑓 ,Θ𝑦,Θ𝑑)+𝛼×𝐿𝑝(𝑋𝑠,𝑋𝑡,𝑌 𝑠,𝑌 𝑡

|Θ𝑓 ,Θ𝑦)
(3)

where the hyper-parameter 𝛼 associated to the progressive transfer strategy gets up-
dated as epochs progresses with the aim to vary their importance during the learning
procedure, defined as:
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𝛼 = 𝛽 ×
epoch

total number of epochs

The hyper-parameter 𝛽 controls the range of the 𝛼 trade-off value with the aim to avoid
the latter to get extreme values that can completely move the learning process towards
the target domain, resulting in a degeneration of the behaviour of the model.

4.3 Multimodal data fusion

Here we describe the multimodal strategies for the supervised and the unsupervised
domain adaptation settings.
4.3.1 Supervised setting
We evaluate two data fusion approaches discussed in Section 2, layer and decision
fusion. To accomplish this, we used a TempCNN encoder for S2 data and the CNN for
S1 data. These networks create a feature representation of both datasets independently.
The layer fusion approach concatenates these features and then pass them through a
fully connected layer to generate the logits and ultimately make a decision. In con-
trast, the decision fusion approach keeps the features separated and generates logits
from each of them, with independent fully connected layers, then class probabilities
are computed and those probabilities are averaged to have a combined decision. More
details of the implementation can be seen in Figure 11, auxiliary classifiers are added
to the network to generate a combined loss between each of the features and the fused.
For the auxiliary classifier we apply a linear fully connected layer with the one neuron
for each land cover class.

𝐿 = 𝐿𝑆2+𝑆1+𝜆1×𝐿𝑆2+𝜆2×𝐿𝑆1 (4)

where 𝜆1 and 𝜆2 are used to weight the contribution of the auxiliary classifiers.
4.3.2 Unsupervised domain adaptation setting
Here we tested different ways to adapt the loss 𝐿𝑑 from the domain discriminator in
a multimodal setting. As each encoder will have it’s own feature representation, we
explored what will be the best location to place the domain classifier, to use the fused
features, each individual features, or a combination of the three. Figure 12 provides
more details of the implementation. Similar to how the loss is combined in the super-
vised classification, here we use the same loss for the label classifier, and perform a
similar approach for the domain loss:
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Figure 11: Multimodal strategy for the layer and decision fusion approaches to
combine S2 and S1 data.

𝐿𝑣1
𝑑 = 𝐿𝑑𝑆1+𝑆2 (5)

𝐿𝑣2
𝑑 = 𝐿𝑑𝑆1 +𝐿𝑑𝑆2 (6)

𝐿𝑣3
𝑑 = 𝐿𝑑𝑆1+𝑆2 +𝐿𝑑𝑆1 +𝐿𝑑𝑆2 (7)

4.4 Experimental settings

Experiments are carried out on a workstation with a dual Intel (R) Xeon (R) CPU E5-
2667v4 (@3.20GHz) with 256 GB of RAM and four TITAN X (Pascal) GPU. All the
deep learning methods were implemented in Python with the Pytorch library and the
code is available in a GitHub repository5. In the following subsections we will provide
the details for the splitting procedure and the implementation of the experiments.
4.4.1 Splitting procedure
Supervised SITS classification models were be trained using either only S2 or S1 data.
The data for each year was split into training, validation and test sets following a pro-
portion of 50%, 30% and 20% respectively. Additionally, with the aim to avoid possible
spatial bias in the evaluation (Karasiak et al., 2022), we ensured that all pixels belonging
to the same object to be exclusively associated with one of the sets (training, validation
or test). The splitting procedure was repeated five times. To also take into account
the variations from weights’ initialization, we trained the models five times on each

5https://github.com/EdgarJoao30/mtda
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Figure 12: Multimodal UDA strategy for the domain discriminator location
approaches to combine S2 and S1 data.
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training/validation/test split.
For the UDA setting, models are trained exploiting the whole set of source and target
samples while having access only to label information from the source domain and
tested on all the target samples. To also take into account the variations from weights’
initialization, we trained the models five times.
4.4.2 Implementation details
The models evaluated in this part were described in Section 4.1, here their parameter
choices are listed. The general hyperparameter settings for all models used are shown
in Table 3.

Table 3: Hyperparameter settings of the evaluated approaches

Hyperparameter Setting or value

Epochs 400
Learning rate 0.0005

Optimizer Adam
Dropout rate 0.5∗∗

Batchsize 256
∗∗ InceptionTime uses a dropout rate of 0.2

In total there are six classification tasks that we evaluated, these are direct classifica-
tion and the transfer tasks. The direct classification tasks correspond to the supervised
classification models applied to the SITS for each year (i.e. 2018, 2020, 2021) using
their corresponding train, validation and test sets. In the results section the direct clas-
sification tasks will be refered using the specific year (e.g. 2018→ 2018), or as 𝐷𝑡→𝑡

when placed together with the transfer tasks or when aggregating results. The transfers
tasks are: 2018→ 2020, 2018→ 2021, and 2020→ 2021, which will be refered in the
results in Section 5 using the specific years involved (e.g. 2018→ 2021), or as 𝐷𝑠→𝑡.
It is important to mention that the direct classification tasks will be done exclusively in
the supervised setting, while the UDA setting will be used exclusively in the transfer
tasks. However, the supervised models will also be evaluated in the transfer tasks for
reference.
Supervised setting: The implementation of Random Forest (Breiman, 2001) from
Scikit-Learn was used with standard parameter settings (Pelletier et al., 2016): 500
trees at maximum depth, and a number of randomly selected variables per node equals
to the square root of the total number of features. For TempCNN, the proposed default
values from Pelletier et al. (2019) were kept, consisting of three convolutional layers
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(64 units), one dense layer (256 units), and the filter size of convolutions is set to 5.
Similarly, for InceptionTime, most of the proposed values from Fawaz et al. (2020)
were kept, but the Inception module had to be adapted to the number of timesteps of
our data, the module has 3 sets of filters each with 32 filters of lengths 5, 9, and 13
(producing a maximum receptive field of 73), and the bottleneck size value was set to
32. The models describe above were used with the S2 SITS data, additionally, a CNN
was used to process S1 SITS data, following the findings of Ienco et al. (2019) and
Gbodjo et al. (2021), using a 2D-CNN for S1 data helps to alleviate possible issues
induced by spatial speckle phenomena that usually affects SAR signal and improves
the added value for combining S2 and S1. As presented in Section 4.3.1 we evaluated
layer and decision fusion approaches. For this, we used a TempCNN encoder for S2
data and the CNN for S1 data. When presenting the results in Section 5, these models
will be named as Layer fusion and Decision fusion.
UDA setting: We evaluated three transfer scenarios (𝐷𝑠 →𝐷𝑡): 2018 → 2020, 2018 →

2021, and 2020 → 2021. The UDA baselines were trained only with S2 or S1 data at a
time. Here, we used the SpADANN framework. The model was trained having a Tem-
pCNN encoder for the only S2 experiments, and the CNN for the only S1 experiments.
We set the 𝛽 parameter to 1, to allow a full transfer to the target domain at the end of
the training process. And also set the 𝜆 parameter, from the GRL to 1, to prevent an
accumulated effect with 𝛼, which already has the role to gradually balance the transfer
task with the use of 𝐿𝑝 over the training process.
Ablation analysis: DANN is the backbone of SpADANN, thus, it will be used as a
competing method during the experiments but will also be seen as an ablation since
it doesn’t use the self-training approach. Additionally, an ablation where the pseudo
labels are selected with a confidence threshold will be tested, where the largest prob-
ability for the class prediction will be compared with a threshold of 0.9. Finally, an
ablation where only the condition regarding both source and target having the same
prediction is preserved, thus, redefining 𝐿𝑝 as:

𝐿𝑝(𝑋𝑠,𝑋𝑡,𝑌 𝑠,𝑌 𝑡
|Θ𝑓 ,Θ𝑦) =

∑

𝒙𝒕𝒊∈𝑋
𝑡

1{𝐺𝑦(𝒙𝒔𝒊 )=𝐺𝑦(𝒙𝒕𝒊)}
𝐻(𝑦̂𝑡𝑖,𝐺𝑦𝑝𝑟𝑜𝑏(𝒙

𝒕
𝒊)) (8)

4.4.3 Performance metrics
The assessment of the model performances was done considering the test set and the
following metrics: accuracy (global precision), F1 score (harmonic mean of precision
and recall). For the temporal domain adaptation approach, the target domain was con-
sidered as the test set. The feature representation of the models is qualitatively assessed
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via a t-SNE visualization (Maaten, 2014). Finally, land cover maps are visually inves-
tigated and compared with each other.
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5 Results and discussion
In this section we will present the results of the experiments for the supervised classi-
fication scenario and the unsupervised domain adaptation scenario. For this, we eval-
uated the models on a set of transfer tasks defined as follow: 𝐷𝑠→𝑡 models trained
on source domain and tested on target domain (i.e. 2018 → 2020, 2018 → 2021, and
2020→ 2021), and 𝐷𝑡→𝑡 models trained on target domain and tested on target domain,
thus, no transfer was performed (i.e. 2018→ 2018, 2020→ 2020, and 2021→ 2021).
We start with the results of the supervised setting, it is important to note that here we
also evaluated the models on 𝐷𝑠→𝑡 for reference, even though the supervised setting
does not assess the transfer tasks in any way, thus, the performance is expected to de-
crease significantly. We continue with the results on the unsupervised temporal domain
adaptation setting, all models are evaluated in 𝐷𝑠→𝑡, and the results of the supervised
setting on 𝐷𝑠→𝑡 and 𝐷𝑡→𝑡 are added here for reference. We extend the results by analyz-
ing the internal feature representation that the models are able to achieve, the confusion
on the classification tasks, and finally the land cover maps are investigated.

5.1 Supervised satellite image time series classification

Here we evaluate the performance of two types of multimodal fusion, layer and de-
cision fusion for S2 and S1 SITS. To arrive a this point, we started evaluating some
baseline models to test whether our data and our models were performing as expected.
Table 4 shows the results of such experiments, where we compare the performance
of random forest, TempCNN and InceptionTime. On average, TempCNN performed
better on the 𝐷𝑡→𝑡 scenario and InceptionTime performed better on the 𝐷𝑠 scenario.
As expected 𝐷𝑠→𝑡 performances are significantly lower than 𝐷𝑡→𝑡 performances. For
TempCNN, the year that had the lowest performance in 𝐷𝑡→𝑡 was 2020 with an F1-
score of 90.08 ± 2.85 , while the transfer task 𝐷𝑠→𝑡 with the lowest performance
was 2018 → 2021. These results are consistent to what was found by Rußwurm et
al. (2020), where they also compared the performances of random forest, TempCNN,
and InceptionTime, among other models, in a dataset they elaborated. When tested on
Sentinel-2 data, TempCNN performed consistently better than InceptionTime. Here
TempCNN also performs better than InceptionTime on average in all 𝐷𝑡→𝑡, although
with no significant differences. In addition, here we evaluated the transfer tasks 𝐷𝑠→𝑡,
where InceptionTime performed better, on average, than random forest and TempCNN.
Table 5 shows the results for the next set of experiments where we introduced multi-
modality to the supervised classification setting. The model CNN𝑆1 was trained with
S1 data to be used as baseline together with the TempCNN𝑆2 trained with S2 from the
previous experiments. Layer fusion and decision fusion models correspond to models
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Table 4: Supervised SITS classification

Transfer
task

Random Forest TempCNN InceptionTime

F1-score Accuracy F1-score Accuracy F1-score Accuracy

2018 → 2018 88.77 ± 1.40 88.77 ± 1.50 91.48 ± 1.98 89.99 ± 2.03 90.97 ± 1.77 89.42 ± 1.90
2018 → 2020 65.10 ± 4.89 66.88 ± 4.22 69.14 ± 7.37 65.14 ± 6.79 68.36 ± 4.54 64.31 ± 4.05
2018 → 2021 61.80 ± 6.15 63.03 ± 5.78 63.10 ± 5.50 58.03 ± 5.19 70.14 ± 7.09 66.03 ± 7.92
2020 → 2020 88.53 ± 2.46 88.67 ± 2.35 90.08 ± 2.85 89.12 ± 2.52 89.42 ± 2.39 88.42 ± 2.30
2020 → 2021 60.12 ± 8.14 62.04 ± 6.42 64.91 ± 7.08 61.32 ± 7.55 72.23 ± 4.81 67.58 ± 4.55
2021 → 2021 89.88 ± 2.40 90.00 ± 2.15 92.95 ± 1.61 91.39 ± 1.51 90.67 ± 2.85 88.55 ± 3.36
Avg. 𝐷𝑠→𝑡 62.34 ± 6.53 63.98 ± 5.55 65.72 ± 6.70 61.50 ± 6.58 70.24 ± 5.60 65.97 ± 5.77

Avg. 𝐷𝑡→𝑡 89.06 ± 2.14 89.15 ± 2.03 91.50 ± 2.21 90.17 ± 2.06 90.35 ± 2.38 88.80 ± 2.59

using a TempCNN encoder for S2 data and a CNN for S1 data, as depicted in Figure 11.
Overall, CNN𝑆1 was able to perform almost as good as TempCNN𝑆2 and even having
a better performance than S2 on the transfer task 2018→ 2021 which was the lowest
performance one for TempCNN𝑆2. There was not an improvement on the 𝐷𝑡→𝑡 sce-
nario, although also not a significant decrease compared to TempCNN𝑆2. However,
where we see an increase is in the 𝐷𝑠→𝑡 transfer tasks, where layer fusion performs
on average almost 6 points higher than TempCNN𝑆2 and 2 points higher than deci-
sion fusion. These results are similar to those found by Ofori-Ampofo et al. (2021),
where they tested S2 and S1 data fusion at input, layer and decision level, finding no
significant differences in the overall F1 score. However, when classes of interest are
underrepresented they found that it is better to use input or layer fusion. Here we also
present the results on the 𝐷𝑠→𝑡 transfer tasks, where layer fusion is performing better.
Due to this findings, layer fusion will be used as a reference on the next section, where
we deal with the unsupervised domain adaptation setting.

Table 5: Multimodal SITS classification
Transfer
task

TempCNN𝑆2 CNN𝑆1 Layer fusion Decision fusion

F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy

2018 → 2018 91.48 ± 1.98 89.99 ± 2.03 88.91 ± 2.95 86.90 ± 3.29 91.89 ± 1.55 90.32 ± 1.47 92.08 ± 1.53 90.40 ± 1.35
2018 → 2020 69.14 ± 7.37 65.14 ± 6.79 66.22 ± 7.88 61.23 ± 8.02 74.41 ± 1.15 70.05 ± 1.48 72.45 ± 2.70 67.99 ± 3.20
2018 → 2021 63.10 ± 5.50 58.03 ± 5.19 67.55 ± 4.75 62.79 ± 4.47 64.65 ± 10.81 59.25 ± 10.36 61.76 ± 10.92 56.57 ± 9.20
2020 → 2020 90.08 ± 2.85 89.12 ± 2.52 89.73 ± 1.64 88.10 ± 1.48 88.68 ± 2.12 87.57 ± 1.30 89.83 ± 3.07 88.75 ± 2.66
2020 → 2021 64.91 ± 7.08 61.32 ± 7.55 60.33 ± 8.23 53.24 ± 8.39 75.38 ± 6.89 71.85 ± 7.13 73.35 ± 7.62 71.53 ± 8.37
2021 → 2021 92.95 ± 1.61 91.39 ± 1.51 89.73 ± 1.60 87.10 ± 2.28 91.58 ± 1.57 89.98 ± 1.06 90.26 ± 0.64 88.39 ± 0.75
Avg. 𝐷𝑠→𝑡 65.72 ± 6.70 61.50 ± 6.58 64.70 ± 7.13 59.09 ± 7.18 71.48 ± 7.43 67.05 ± 7.31 69.19 ± 7.84 65.36 ± 7.41
Avg. 𝐷𝑡→𝑡 91.50 ± 2.21 90.17 ± 2.06 89.46 ± 2.16 87.37 ± 2.46 90.72 ± 1.77 89.29 ± 1.29 90.72 ± 2.00 89.18 ± 1.77
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5.2 Unsupervised temporal domain adaptation for satellite image
time series classification

For the temporal domain adaptation setting, we compared the different versions of
SpADANN w.r.t the data modalities, i.e. using S2 (SpADANN𝑆2), S1 (SpADANN𝑆1)
or the multimodal scenarios, where we assessed the number and location of domain dis-
criminators, referred here as mmSpADANN𝑣1, mmSpADANN𝑣2, and mmSpADANN𝑣3,
for one, two or three domains discriminators on the fused data, on each feature repre-
sentation or on all fused and separated features respectively. We also added the previous
results from the supervised setting, more specifically, TempCNN𝑆2, CNN𝑆1, and layer
fusion, to be used as reference. We used 𝐷𝑠→𝑡 transfer tasks on the supervised setting
as a direct transfer, or a worst case scenario where there is no information about the tar-
get domain and a supervised model trained in a different year is applied directly to the
target year. Whereas 𝐷𝑡→𝑡 is used as a best case scenario, where no transfer is needed
as the supervised model is trained on the same year to where it’s applied.
Table 6 shows the results for these set of experiments, both SpADANN𝑆2 and SpADANN𝑆1

are able to achieve good performances on average, reaching the performance of 𝐷𝑡→𝑡

supervised models, SpADANN𝑆1 is on average 0.43 points higher than SpADANN𝑆2,
and 0.88 points lower than TempCNN𝑆2 on𝐷𝑡→𝑡. All of the mmSpADANN approaches
are able to improve SpADANN, however, mmSpADANN𝑣2 and mmSpADANN𝑣3 are
on average higher than mmSpADANN𝑣1 with an average F1 score of 91.32, but still
lower than TempCNN𝑆2 on 𝐷𝑡→𝑡 which has an average F1 score of 91.99. Additionally,
we also trained a multimodal DANN model with the same settings as mmSpADANN𝑣3

as a competing method, and we can observe that even though mmDANN𝑣3 is able to
achieve a better performance than the supervised models on 𝐷𝑠→𝑡, mmSpADANN𝑣3

still outperforms mmDANN𝑣3 by 8.49 points on F1 score, highlighting the importance
of the self-training component in SpADANN.
We also evaluated per-class performances for each of the transfer tasks. Table 7 shows
the results for the transfer task of 2018→ 2021, the results for the other transfer tasks
can be seen in the supplementary material. At a first glance on the supervised models,
both on 𝐷𝑠→𝑡 and 𝐷𝑡→𝑡, there is no obvious benefit on combining S2 and S1 data, the
models perform very similar and the standard deviation of the per-class performance is
large enough to no be able to determine significant differences, except on two classes in
𝐷𝑠→𝑡, oleaginous and grassland, here the layer fusion approach is able to outperform the
single modality models. However, the contribution in the temporal domain adaptation
setting is clearer, mmSpADANN𝑣3 is able to increase the performance of all classes
and even achieving a higher performance than 𝐷𝑡→𝑡 in cereals, grassland, forest and
baresoil. In general, all UDA approaches either with single modality or multimodal are
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Table 6: Unsupervised temporal domain adaptation

Strategy Method
2018 → 2020 2018 → 2021 2020 → 2021 Avg.

F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy

𝐷𝑠→𝑡

CNN𝑆1 66.22 ± 7.88 61.23 ± 8.02 67.55 ± 4.75 62.79 ± 4.47 60.33 ± 8.23 53.24 ± 8.39 64.70 ± 7.13 59.09 ± 7.18
TempCNN𝑆2 69.14 ± 7.37 65.14 ± 6.79 63.10 ± 5.50 58.03 ± 5.19 64.91 ± 7.08 61.32 ± 7.55 65.72 ± 6.70 61.50 ± 6.58
Layer fusion 74.41 ± 1.15 70.05 ± 1.48 64.65 ± 10.81 59.25 ± 10.36 75.38 ± 6.89 71.85 ± 7.13 71.48 ± 7.43 67.05 ± 7.31

UDA

mmDANN𝑣3 84.74 ± 1.50 78.76 ± 2.22 80.29 ± 0.41 73.12 ± 0.49 83.47 ± 0.32 75.90 ± 0.39 82.83 ± 0.92 75.93 ± 1.33
SpADANN𝑆2 88.79 ± 0.15 87.49 ± 0.24 90.56 ± 0.27 89.02 ± 0.32 92.71 ± 0.18 91.07 ± 0.20 90.68 ± 0.21 89.19 ± 0.26
SpADANN𝑆1 89.38 ± 0.18 89.13 ± 0.10 91.03 ± 0.73 90.47 ± 1.37 92.93 ± 0.23 92.70 ± 0.51 91.11 ± 0.45 90.77 ± 0.84

mmSpADANN𝑣1 89.41 ± 0.06 89.22 ± 0.06 91.42 ± 0.28 91.13 ± 0.49 93.05 ± 0.11 92.86 ± 0.19 91.29 ± 0.18 91.07 ± 0.30
mmSpADANN𝑣2 89.35 ± 0.17 89.12 ± 0.30 91.58 ± 0.01 91.42 ± 0.03 93.04 ± 0.11 92.91 ± 0.17 91.32 ± 0.12 91.15 ± 0.20

mmSpADANN𝑣3 89.30 ± 0.07 89.05 ± 0.11 91.61 ± 0.04 91.38 ± 0.08 93.06 ± 0.07 92.96 ± 0.13 91.32 ± 0.06 91.13 ± 0.11

𝐷𝑡→𝑡

CNN𝑆1 89.73 ± 1.64 88.10 ± 1.48 89.73 ± 1.60 87.10 ± 2.28 89.73 ± 1.60 87.10 ± 2.28 89.73 ± 1.61 87.43 ± 2.05
Layer fusion 88.68 ± 2.12 87.57 ± 1.30 91.58 ± 1.57 89.98 ± 1.06 91.58 ± 1.57 89.98 ± 1.06 90.61 ± 1.77 89.18 ± 1.33
TempCNN𝑆2 90.08 ± 2.85 89.12 ± 2.52 92.95 ± 1.61 91.39 ± 1.51 92.95 ± 1.61 91.39 ± 1.51 91.99 ± 2.11 90.63 ± 1.91

able to significantly outperform the supervised models in 𝐷𝑠→𝑡, and as mentioned, even
outperform 𝐷𝑡→𝑡 in well represented classes. On average mmSpADANN𝑣3 is able to
outperform the supervised models in 𝐷𝑠→𝑡 by at least 24.06 points of F1 score.

Table 7: Class-wise F1-score for the transfer task 2018→2021
Class
name

𝐷𝑠→𝑡 UDA 𝐷𝑡→𝑡

TempCNN𝑆2 CNN𝑆1 Layer fusion SpADANN𝑆2 SpADANN𝑆1 mmSpADANN𝑣3 TempCNN𝑆2 CNN𝑆1 Layer fusion

■ Cereals 55.69 ± 4.39 45.96 ± 15.06 53.37 ± 4.05 86.81 ± 0.36 91.79 ± 0.89 92.38 ± 0.41 90.70 ± 1.90 85.99 ± 3.54 88.17 ± 4.21
■ Cotton 58.90 ± 4.93 60.76 ± 4.41 57.91 ± 3.41 64.76 ± 0.72 68.35 ± 0.89 69.08 ± 0.30 87.91 ± 5.56 87.44 ± 4.62 90.08 ± 7.21

■ Oleag./Legum. 26.27 ± 6.13 23.71 ± 8.65 47.49 ± 5.65 57.60 ± 2.29 65.22 ± 0.22 65.74 ± 0.45 85.73 ± 4.26 80.66 ± 2.90 79.64 ± 1.62
■ Grassland 64.12 ± 11.82 61.58 ± 8.74 72.29 ± 5.11 91.41 ± 0.32 91.22 ± 0.72 91.48 ± 0.34 88.04 ± 5.69 89.16 ± 2.29 90.27 ± 2.10

■ Shrubland 51.89 ± 14.42 70.67 ± 10.77 45.77 ± 27.68 96.00 ± 0.16 96.06 ± 2.15 97.27 ± 0.16 92.92 ± 2.63 88.03 ± 3.63 92.04 ± 2.87
■ Forest 58.27 ± 19.95 54.16 ± 21.10 58.75 ± 16.40 98.40 ± 0.23 97.53 ± 2.71 99.03 ± 0.19 91.24 ± 8.02 81.70 ± 17.61 88.21 ± 10.48
■ Baresoil 74.76 ± 12.38 33.82 ± 20.09 60.61 ± 27.25 88.20 ± 0.34 88.83 ± 2.11 90.38 ± 1.30 88.44 ± 10.29 80.48 ± 24.46 83.21 ± 23.25
■ Water 99.92 ± 0.10 97.91 ± 1.97 99.58 ± 0.84 99.99 ± 0.02 100.00 ± 0.00 100.00 ± 0.00 98.82 ± 2.04 96.70 ± 5.12 99.09 ± 0.81

Total 61.10 ± 5.50 67.55 ± 4.75 64.65 ± 10.81 90.56 ± 0.27 91.03 ± 0.73 91.61 ± 0.04 92.95 ± 1.61 89.73 ± 1.60 91.58 ± 1.57

These results can be further explained by seeing Figure 13. Here, the improvement of
mmSpADANN𝑣3 compare to layer fusion in𝐷𝑠→𝑡 is evident, and the confusion between
the crop classes are further described: 25% of cotton is misclassified as cereals, and
37% of oleaginous is misclassified as cotton. As previously seen in Table 1, cotton and
oleaginous classes are the least represented of the crop classes, and overall with the
exception of bare soil and water. On Figure 14 we can see how the crop classes on
mmSpADANN𝑣3 are still not as well defined as in layer fusion in 𝐷𝑡→𝑡 , but present a
better cluster configuration than layer fusion in 𝐷𝑠→𝑡.
It is important to consider the aggregation method of the metrics on interpreting the
results. Table 6 shows a small improvement in the multimodal framework compared to
the single modalities versions, however, when we see the results on the specific classes
in Table 7, they show a systematic improvement in all classes compared to the single
modalities models. This is because the metrics are aggregated using a weighted aver-
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Figure 13: Confusion matrix 2018 → 2021
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Figure 14: t-SNE 2018 → 2021
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age, which accounts for the number of instances of each class. This is done to account
for class imbalance, but at the same time hides the improvement that we aimed to see
for those underrepresented classes. Table 8 shows the results of the SpADANN frame-
work with the different aggregation procedures to compute the average F1 score. Where
Weighted takes into account class imbalance, Micro calculates the metric globally, and
Macro doesn’t perform any weighting. There, we can see that in the Macro F1 score
the improvement of the model is more evident.

Table 8: F1-score 2018 → 2021

Method Weighted Micro Macro

SpADANN𝑆2 90.56 ± 0.27 89.01 ± 0.28 56.78 ± 0.90
SpADANN𝑆1 91.03 ± 0.73 90.47 ± 1.23 72.40 ± 7.02
mmSpADANN𝑣3 91.61 ± 0.04 91.38 ± 0.07 78.34 ± 3.04

The ablation analysis consisted on comparing the performance of the multimodal ap-
proach on the different components of SpADANN. Table 9 summarizes the results,
where all models use the mmSpADANN𝑣3 multimodal approach with three domain
classifiers. mmDANN𝑣3 takes out the self-training component, mmSpADANN𝑇𝐻

𝑣3 uses
a traditional thresholding approach where predictions with more than 90% of confi-
dence in the target domain are used as pseudo-labels, and mmSpADANN𝐶1

𝑣3 uses only
the condition that both source and target domain have to give the same prediction to be
used as pseudo-labels. We can note that effectively mmSpADANN𝑣3 provides the best
performance compared to its ablations followed very closely by mmSpADANN𝐶1

𝑣3 , and
mmDANN𝑣3 and mmSpADANN𝑇𝐻

𝑣3 provides the lowest performance. These results
highlight the importance of guiding the transfer process with the use of pseudo-labels,
as the domain-invariant features are not sufficient to provide a good performance on its
own. However, the selection criteria for the pseudo-labels also plays an important role,
solely relying in a threshold value will add too much noise from wrongly classified
pseudo-labels and ultimately degrade the performance of the model, making it even
worse than not using them in the first place. Having only the condition for the same
prediction on the source and target domain achieves almost the same performance than
adding the condition of having the correct prediction on the source domain, this is prob-
ably due to the high performance that the model is able to achieve at the beginning of
the training process in the source domain. These results are consistent with the ablation
study performed in the original publication of the SpADANN framework by Capliez
et al. (2023), confirming that the extension of the framework to deal with multimodal
remote sensing data does not change the behaviour of the SpADANN components.
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Table 9: mmSpADANN ablations 2018 → 2021

Method F1-score Accuracy

mmDANN𝑣3 80.29 ± 0.41 73.12 ± 0.49
mmSpADANN𝑇𝐻

𝑣3 79.16 ± 0.74 71.48 ± 1.22
mmSpADANN𝐶1

𝑣3 91.56 ± 0.08 91.30 ± 0.11
mmSpADANN𝑣3 91.61 ± 0.04 91.38 ± 0.08

Similarly to what we did in the previous analysis, to qualitatively assess the Land Cover
Maps (LCM) we compared mmSpADANN𝑣3 with layer fusion in 𝐷𝑠→𝑡 and 𝐷𝑡→𝑡. Ad-
ditionally, we also compared it with the single modality versions SpADANN𝑆2 and
SpADANN𝑆1. Figure 15 provides the LCM for an area of 500 ha, the main observa-
tion to notice is the underestimation of the oleaginous class (compared to 𝐷𝑡→𝑡), which
is consistent with the results described in Figure 13, and the overestimation of the ce-
reals class. However, it is important to notice that even though we using 𝐷𝑡→𝑡 as a sort
of upper bound, it cannot be fully considered as a true reference map.
The lower performance of the oleaginous class and its resulting underestimation de-
picted in the LCM can be due to the imbalance of the crop classes in the reference data,
where oleaginous reference samples represent only the 4.5% of the total amount of ref-
erence data during the year 2018, and 9.15% during the year 2021. Additionally, as
was seen on Figure 5 in Section 3.2 only 56% of the reference data from the oleaginous
class in 2018 remains on the same class in 2021, due to the self-training procedure of
SpADANN, this limits even more the amount of reference data used for the oleaginous
class, as the pseudo-labels are selected only from pixels that belong to the same class
in both the source and target domain. Even though the framework aims to generate do-
main invariant features, it requires objects or classes associated to those features to be
the same. Meaning that the criteria to define what is considered to be e.g. forest in the
source domain is the same criteria in the target domain. This is strongly dependent on
how field campaigns collect reference data work over long time-spans. In the case of
general crop classes that group many specific crops types, as is the case in the oleagi-
nous/leguminous class, represents an additional difficulty to generate features that are
able to correctly classify the class across different years. One indication that this could
be the case for the oleaginous class is the increase in the number of polygons from 2018
to 2020 and 2021. There is an increase of 63.35% in the number of polygons collected
as reference data in the oleaginous class, while increasing the average surface of each
individual polygon by 25.53%. This change from small sparse crops (e.g. ground nuts,
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cow peas) during 2018 to larger crops (e.g. soybeans) in 2021, could explain the dif-
ficulty in that we encountered in having good performances for this class compared to
the others, as those different crops grouped into the same category have different phe-
nological cycles. When comparing to the single modality versions, mmSpADANN𝑣3

is able to produce less noisy maps, demonstrating the contribution of integrating S2
and S1 data to provide more consistent LCM.

Figure 15: Land cover map 2018 → 2021
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6 Conclusion
In this work we have extended the SpADANN framework that deals with temporal unsu-
pervised domain adaptation of satellite image time series, to be able to use multimodal
(Sentinel-2 and Sentinel-1) data and take advantage of both optical and radar satellite
images to improve land cover mapping performances. More precisely, we used a layer
fusion approach to combine the domain-invariant feature representations of Sentinel-
2 and Sentinel-1 time series, where for Sentinel-2 we focused on extracting temporal
patterns using a TempCNN encoder, while for Sentinel-1 we used a 2D-CNN to cope
with the speckle effect associated with radar images.
The results obtained on the Koumbia study site have shown that on both supervised and
unsupervised domain adaption settings, there is an improvement on using multimodal
data. On a supervised setting, layer and decision fusion performed similarly, however,
the layer fusion approach is able to achieve a better performance in a direct transfer
task. In the unsupervised temporal domain adaptation setting our framework that ex-
pands SpADANN with a layer fusion approach of Sentinel-2 and Sentinel-1 SITS, takes
advantage of the spatio-temporal features related to the underlying multi-sensor remote
sensing data, and is able to improve the performance compared to single-sensor data.
The UDA setting is of great importance due to their ability to transfer a model to an
unlabeled domain, resulting in saving resources and having products in a timely man-
ner. To be able to use as much information as possible in an integrated manner helps
to improve the performances of land cover maps. In this regard, there is already huge
advances in having analysis ready data in remote sensing, but the quality of reference
data is a factor that cannot be overlooked. As we have seen in our results, underrep-
resented classes that are a group of other sub-classes can introduce confusion in the
classification, specially if the class is not well defined, or if the class is so broad that
introduces sub-classes with different spectral and temporal signatures.
Further research could explore the possibility to include other modalities of remote
sensing data (e.g. very high resolution images, elevation) or in general earth obser-
vation data (e.g. weather re-analysis) that can provide additional context to the do-
mains, or even non-remote sensing data in the form of metadata. Also, the scenario
of multi-source unsupervised domain adaptation remains as a possible extension of
the SpADANN framework, which could be able to deal with the issue of classes than
change definition, or group different sub-classes, in different years. Finally, another
plausible scenario is to have limited reference data on some important classes in the
target domain, there, a semi-supervised domain adaptation framework could be able to
use data from both the source and target domain jointly.
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Table 10: Class-wise F1-score for the transfer task 2018→2020
Class
name

𝐷𝑠 UDA 𝐷𝑡
TempCNN𝑆2 CNN𝑆1 lf(S2+S1) SpADANN𝑆2 SpADANN𝑆1 mmSpADANN𝑣3 TempCNN𝑆2 CNN𝑆1 lf(S2+S1)

■ Cereals 60.57 ± 6.26 48.14 ± 6.46 49.31 ± 15.17 80.67 ± 0.37 85.06 ± 0.19 84.73 ± 0.32 89.82 ± 5.84 84.43 ± 3.60 84.75 ± 5.49
■ Cotton 56.40 ± 6.48 58.45 ± 5.80 62.04 ± 8.95 49.53 ± 0.40 49.98 ± 0.76 49.44 ± 0.25 92.21 ± 2.70 90.62 ± 3.43 90.71 ± 6.09
■ Oleag./Legum. 37.27 ± 6.77 25.06 ± 8.27 50.94 ± 9.47 56.12 ± 1.52 61.80 ± 0.28 62.03 ± 0.36 85.54 ± 4.99 78.52 ± 3.94 83.03 ± 6.73
■ Grassland 79.31 ± 6.17 66.07 ± 7.33 83.38 ± 7.09 96.62 ± 0.31 97.46 ± 0.06 97.65 ± 0.13 89.37 ± 7.29 90.83 ± 1.72 92.21 ± 2.36
■ Shrubland 64.07 ± 27.07 74.57 ± 3.28 72.20 ± 15.20 97.47 ± 0.25 98.52 ± 0.08 98.43 ± 0.22 88.34 ± 10.05 91.16 ± 3.05 89.54 ± 5.27
■ Forest 62.08 ± 7.21 52.87 ± 23.38 71.43 ± 15.35 97.74 ± 0.52 98.12 ± 0.11 98.02 ± 0.28 86.07 ± 10.96 84.86 ± 12.08 82.26 ± 10.50
■ Baresoil 53.58 ± 13.37 33.38 ± 15.93 54.49 ± 16.54 83.07 ± 0.24 83.77 ± 1.47 84.79 ± 1.85 81.07 ± 23.88 78.98 ± 12.89 77.11 ± 16.35
■ Water 99.79 ± 0.46 99.27 ± 1.07 99.62 ± 0.76 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Total 69.14 ± 7.37 66.22 ± 7.88 74.41 ± 1.15 88.79 ± 0.15 89.38 ± 0.18 89.30 ± 0.07 90.08 ± 2.85 89.73 ± 1.64 88.68 ± 2.12

Table 11: Class-wise F1-score for the transfer task 2020→2021
Class
name

𝐷𝑠 UDA 𝐷𝑡
TempCNN𝑆2 CNN𝑆1 lf(S2+S1) SpADANN𝑆2 SpADANN𝑆1 mmSpADANN𝑣3 TempCNN𝑆2 CNN𝑆1 lf(S2+S1)

■ Cereals 60.80 ± 5.47 52.62 ± 7.39 62.61 ± 6.56 86.37 ± 0.50 91.08 ± 0.50 91.20 ± 0.34 90.70 ± 1.90 85.99 ± 3.54 88.17 ± 4.21
■ Cotton 59.28 ± 14.44 56.42 ± 12.83 55.69 ± 12.34 74.40 ± 1.02 77.26 ± 0.69 77.51 ± 0.29 87.91 ± 5.56 87.44 ± 4.62 90.08 ± 7.21
■ Oleag./Legum. 30.76 ± 7.88 27.55 ± 7.66 47.28 ± 7.48 82.93 ± 0.37 86.36 ± 0.50 86.63 ± 0.13 85.73 ± 4.26 80.66 ± 2.90 79.64 ± 1.62
■ Grassland 62.29 ± 13.61 52.88 ± 9.61 78.28 ± 7.53 92.73 ± 0.43 92.33 ± 0.35 92.30 ± 0.22 88.04 ± 5.69 89.16 ± 2.29 90.27 ± 2.10
■ Shrubland 57.51 ± 9.79 51.00 ± 6.73 68.27 ± 17.91 94.70 ± 0.05 95.85 ± 0.55 96.11 ± 0.10 92.92 ± 2.63 88.03 ± 3.63 92.04 ± 2.87
■ Forest 61.40 ± 17.65 57.18 ± 16.46 68.29 ± 19.78 97.32 ± 0.12 97.56 ± 1.21 98.16 ± 0.15 91.24 ± 8.02 81.70 ± 17.61 88.21 ± 10.48
■ Baresoil 72.17 ± 20.06 23.60 ± 20.32 69.01 ± 10.14 93.46 ± 0.58 96.94 ± 1.96 97.23 ± 1.77 88.44 ± 10.29 80.48 ± 24.46 83.21 ± 23.25
■ Water 99.78 ± 0.43 98.45 ± 1.49 99.95 ± 0.10 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 98.82 ± 2.04 96.70 ± 5.12 99.09 ± 0.81
Total 64.91 ± 7.08 60.33 ± 8.23 75.38 ± 6.89 92.71 ± 0.18 92.93 ± 0.23 93.06 ± 0.07 92.95 ± 1.61 89.73 ± 1.60 91.58 ± 1.57

Table 12: F1-score 2018 → 2020
Method Weighted Micro Macro
SpADANN𝑆2 88.79 ± 0.15 87.49 ± 0.21 57.34 ± 1.12
SpADANN𝑆1 89.38 ± 0.18 89.13 ± 0.09 76.90 ± 2.38
mmSpADANN𝑣3 89.30 ± 0.07 89.05 ± 0.10 75.09 ± 1.69
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Table 13: F1-score 2020 → 2021
Method Weighted Micro Macro
SpADANN𝑆2 92.71 ± 0.18 91.07 ± 0.18 55.52 ± 1.80
SpADANN𝑆1 92.93 ± 0.23 92.70 ± 0.45 78.15 ± 5.95
mmSpADANN𝑣3 93.06 ± 0.07 92.96 ± 0.12 81.44 ± 3.08

Figure 16: Confusion matrix 2018 → 2020
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Figure 17: Confusion matrix 2020 → 2021
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Figure 18: t-SNE 2018 → 2020
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Figure 19: t-SNE 2020 → 2021
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